München – Die Einführung des Mobilfunkstandards 5G sorgte für große Diskussionen. Nun laufen an der TU München bereits Forschungen zum neuen Mobilfunkstandard 6 G. Die ersten kommerziellen 6G Netze sollen ab 2030 verfügbar sein.
Schon heute erproben und entwickeln Forscher der Technischen Universität München (TUM) und der TU Dresen in den Initiativen 6G-life und 6G Zukunftslabor Bayern die grundlegenden Mechanismen der sechsten Mobilfunkgeneration. Ein Ziel ist es, ein vollständiges Kommunikationssystem mit Komponenten aufzubauen, die nur von deutschen Start-ups stammen.
Während bei 5G die Kommunikation zwischen Maschinen im Vordergrund steht, soll bei 6G der Mensch und seine Kommunikation und Interaktion mit Maschinen und virtuellen Welten in den Mittelpunkt rücken. Die Forschenden von TUM und TU Dresden verfolgen vier grundlegende Fragestellungen: Wie wird die Kommunikation noch schneller? Wie können die Privatsphäre geschützt und Angriffe abgewehrt werden? Wie kann die Ausfallsicherheit für kritische Anwendungen in Industrie und Medizin maximiert werden? Und wie wird die Nachhaltigkeit der digitalen Kommunikation erhöht?
Die beiden Projekte 6G-life und 6G Zukunftslabor Bayern sollen sicherstellen, dass Deutschland eine führende Rolle in der Entwicklung der 6G-Technologie spielt. An der TUM sind über 30 Professuren an den Initiativen beteiligt und forschen zu unterschiedlichen zukunftsweisenden Themen:
Digitale Zwillinge:
Darum geht es: Digitale Zwillinge bilden bei 6G die Umgebung eines Kommunikationsgeräts in Echtzeit im virtuellen Raum ab.
So funktioniert es: Um höhere Datenraten zu übertragen, werden bei 6G höhere Frequenzen genutzt. Je höher eine Frequenz ist, desto schlechter kann sie Hindernisse wie Wände oder Türen durchdringen. Damit es nicht zu Verzögerungen in der Kommunikation kommt, muss sichergestellt sein, dass das Gerät rechtzeitig von einer Basisstation zur nächsten wechselt. Hier kommt der digitale Zwilling zum Einsatz: Durch die kontinuierliche Erfassung der Umgebung mittels Sensoren, die entweder direkt im Kommunikationsgerät, in den Basisstationen oder in der Umgebung platziert sind, wird ein dynamisch aktualisierter digitaler Zwilling erstellt. Dieser ermöglicht es dem Gerät zu jedem Zeitpunkt, seinen Standort im Raum genau zu bestimmen und situationsabhängig zu entscheiden, wann ein Wechsel zu einer anderen Basisstation vorteilhaft ist.
Abhörsichere und störfreie Übertragung
Darum geht es: Die Übertragung von Daten soll bei 6G störungsfrei funktionieren und gleichzeitig geschützt sein. Die Forschenden untersuchen hierfür die unterste Ebene der Kommunikation zwischen Computern, die sogenannte physikalische Schicht.
So funktioniert es: Die Kommunikation zwischen Computern lässt sich durch das OSI-Modell beschreiben. Dieses Modell unterteilt den gesamten Prozess in sieben Schritten, bei denen jede Schicht ihre eigenen Funktionen und Aufgaben erfüllt und eng mit den anderen Schichten verknüpft ist. Die Forschenden setzen an der untersten Ebene an, der sogenannten physikalischen Schicht. Sie sorgt dafür, dass die Bits über physikalische Medien wie Kupferkabel, Glasfasern oder Funkwellen übertragen werden. Die Sicherheit soll durch ein neuartiges modulares Kodierungsverfahren erreicht werden, bei dem eine zusätzliche Sicherheitsschicht künstliches Rauschen zur Nachricht hinzufügt. Dieses führt dazu, dass die Abhörenden keine Informationen über die Nachricht aus ihrem Empfangssignal extrahieren können.
Adaptive Netzplattform für Telediagnostik und Teleüberwachung in der Medizin
Darum geht es: Medizinisches Personal soll mit einer Funkkommunikationsplattform unterstützt werden, die die Patientenüberwachung und Diagnostik aus der Ferne ermöglicht.
So funktioniert es: Medizinische Anwendungen werden aus der Ferne über über Funkkommunikation mit minimaler Verzögerung bedient. Die Daten, die dabei zum Beispiel von unterschiedlichen medizinischen Geräten erfasst werden, werden an einer Stelle gesammelt und verarbeitet. Um die Verzögerungen bei der Übertragung möglichst gering zu halten, werden die Daten bereits im Netz verarbeitet. Die Funktionen im Netz passen sich an die aktuelle Situation automatisch an.
Technologiesouveränität
Darum geht es: Zukünftige Kommunikationsnetze müssen in Zukunft unabhängig von bestimmten Herstellern geplant und betrieben werden können.
So funktioniert es: Die Forschenden haben zum einen eine neue Metrik für die Planung von Netzen hinsichtlich Netzsouveränität entwickelt, zum anderen wurde ein vollständiges Ende-zu-Ende-Kommunikationssystem mit Komponenten, die nur von deutschen Start-ups stammen, aufgebaut.
(Quelle: Pressemitteilung TU München / Beitragsbild: Symbolfoto re)